skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shirvastava, Aviral"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As vehicles become autonomous and connected, intelligent management techniques can be utilized to operate an intersection without a traffic light. When a Connected Autonomous Vehicle (CAV) approaches an intersection, it shares its status and intended direction with the Intersection Manager (IM), and the IM checks the status of other CAVs and assigns a target velocity/reference trajectory for it to maintain. In practice, however, there is an unknown delay between the time a CAV sends a request to the IM and the moment it receives back the response, namely, the Round-Trip Delay (RTD). As a result, the CAV will start tracking the target velocity/reference trajectory later than when the IM expects, which may lead to accidents. In this article, we present a time-aware approach, Crossroads+, that makes CAVs’ behaviors deterministic despite the existence of the unknown RTD. In Crossroads+, we use timestamping and synchronization to ensure that both the IM and the CAVs have the same notion of time. The IM will also set a fixed start time to track the target velocity/reference trajectory for each CAV. The effectiveness of the proposed Crossroads+ technique is illustrated by experiments on a 1/10 scale model of an intersection with CAVs. We also built a simulator to demonstrate the scalability of Crossroads+ for multi-lane intersections. Results from our experiments indicate that our approach can reduce the position uncertainty by 15% in comparison with conventional techniques and achieve up to 36% better throughputs. 
    more » « less
  2. null (Ed.)